A Review of Dynamics Exam 1 Material
As part of my studies in mechanical engineering, I've compiled this cheat sheet on dynamics to help me prepare for my upcoming exam. It covers key concepts and equations from weeks 2 to 6 of the course.
Week 2
Math Review
Dot Product
For \( \vec{A} \cdot \vec{B} = 0 \), \( \vec{A} \perp \vec{B} \).
Cross Product
For \( \vec{A} \times \vec{B} = 0 \), \( \vec{A} \parallel \vec{B} \).
Chain Rule:
\[
\frac{d}{dx} [f(g(x))] = \frac{df(g)}{dg} \frac{dg(x)}{dx}
\]
Product Rule:
\[
\frac{d}{dx} [f(x)g(x)] = f(x) \frac{dg(x)}{dx} + \frac{df(x)}{dx} g(x)
\]
Trigonometry:
Week 3
Coordinate Systems
Cartesian Coordinates
\[
\vec{r} = x(t) \hat{e}_x + y(t) \hat{e}_y + z(t) \hat{e}_z
\]
\[
\vec{v} = \dot{\vec{r}}(t)
\]
\[
\vec{a} = \ddot{\vec{r}}(t)
\]
Cylindrical Coordinates
\[
\vec{r} = r \hat{e}_r + z \hat{e}_z
\]
\[
\vec{v} = \dot{r} \hat{e}_r + r\dot{\theta} \hat{e}_{\theta} + \dot{z} \hat{e}_z
\]
\[
\vec{a} = (\ddot{r} - r\dot{\theta}^2) \hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta}) \hat{e}_{\theta} + \ddot{z} \hat{e}_z
\]
Cylindrical Basis
\[
\hat{e}_r = \cos\theta \hat{e}_x + \sin\theta \hat{e}_y, \quad \hat{e}_{\theta} = -\sin\theta \hat{e}_x + \cos\theta \hat{e}_y
\]
\[
\dot{\hat{e}}_r = \dot{\theta} \hat{e}_{\theta}, \quad \dot{\hat{e}}_{\theta} = -\dot{\theta} \hat{e}_r
\]
\[
\hat{e}_z = 0, \quad x = r \cos\theta, \quad y = r \sin\theta
\]
Normal-Tangent Coordinate System
Radius of Curvature:
\[
\kappa = \frac{1}{\rho} = \frac{\left| \frac{d^2 y}{dx^2} \right|}{\left(1 + \left( \frac{dy}{dx} \right)^2 \right)^{3/2}} \approx \frac{d^2 y}{dx^2} \quad
\]
Infinitesimal Path Traveled:
\[
ds = \rho d\beta
\]
Speed:
\[
v = \frac{ds}{dt} = \rho \frac{d\beta}{dt} = \rho \dot{\beta}
\]
Velocity:
\[
\vec{v} = \rho \dot{\beta} \hat{e}_t
\]
Acceleration:
\[
\vec{a} = \dot{v} \hat{e}_t + \frac{v^2}{\rho} \hat{e}_n
\]
Week 4
Free Vibration of Particles: Undamped
Equation of Motion:
\[
m\ddot{x} + kx = 0
\]
Simple Harmonic Motion Equation:
\[
\ddot{x} + \omega_n^2 x = 0 ,\quad \omega_n = \sqrt{\frac{k}{m}}
\]
With solution of the form:
\[
x = A \cos(\omega_n t) + B \sin(\omega_n t) \quad \text{or} \quad x = C \sin(\omega_n t + \psi)
\]
Natural Frequency:
\[
f_n = \frac{1}{\tau} = \frac{\omega_n}{2\pi}
\]
Units: \(1\, \text{Hz} = 1\, \text{cycle/second}\)
Conservation of Angular Momentum
Angular Momentum:
\[
r^2\dot{\theta} = h = \text{constant}
\]
Acceleration Components:
\[
a_r = \ddot{r} - r\dot{\theta}^2, \quad a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}
\]
\[
a_{\theta} = \frac{1}{r}\frac{d}{dt}(r^2\dot{\theta})
\]
Friction: Static and Kinetic
Static Friction:
\[
|F_{\text{f}}| \leq \mu_s |N|
\]
If \( |F_{\text{trial}}| > \mu_s |N| \), sliding occurs.
Kinetic Friction:
\[
F_{\text{f}} = -\mu_k |N| \frac{\vec{v}_{\text{rel}}}{||\vec{v}_{\text{rel}}||}
\]
Detailed Friction Model:
- \( \vec{F}^* \): Sum of all forces except tangential friction \( F_t \).
- Tangential component:
\[
F_t^* = \vec{F}^* - (\vec{F}^* \cdot \hat{e}_n)\hat{e}_n
\]
- Trial friction force:
\[
F_{\text{trial}} = m \left( \dot{\vec{v}}_{\text{wall}} - (\hat{e}_n \cdot \dot{\vec{v}}_{\text{wall}}) \hat{e}_n \right) = F_t^*
\]
- Friction force \( F_t \):
\[
F_t = \begin{cases}
- F_{\text{trial}}, & v_s = 0, \ |F_{\text{trial}}| \leq \mu_s |N| \\
- \mu_s |N| \dfrac{F_{\text{trial}}}{|F_{\text{trial}}|}, & v_s = 0, \ |F_{\text{trial}}| > \mu_s |N| \\
- \mu_k |N| \dfrac{\vec{v}_s}{||\vec{v}_s||}, & v_s \ne 0
\end{cases}
\]
Week 5
Relative Motion in Non-Rotating Frames
\[
\vec{r}_A = \vec{r}_B + \vec{r}_{A/B}
\]
\[
\vec{v}_A = \vec{v}_B + \vec{v}_{A/B}
\]
\[
\vec{a}_A = \vec{a}_B + \vec{a}_{A/B}
\]
Cartesian Motion:
\[
\vec{a}_{A/B} = (\vec{a}_{A/B})_x \hat{i} + (\vec{a}_{A/B})_y \hat{j}
\]
Normal-Tangential:
\[
\vec{a}_{A/B} = (\vec{a}_{A/B})_t \hat{e}_t + (\vec{a}_{A/B})_n \hat{e}_n
\]
Where:
\[
(\vec{a}_{A/B})_t = \alpha \times \vec{r}, \quad (\vec{a}_{A/B})_n = \omega \times (\omega \times \vec{r})
\]
Relative Motion in Rotating Frames
For velocity:
\[
\vec{v}_A = \vec{v}_B + \omega \times \vec{r}_{\text{rel}} + \vec{v}_{\text{rel}}
\]
For acceleration:
\[
\vec{a}_A = \vec{a}_B + \dot{\omega} \times \vec{r}_{\text{rel}} + \omega \times (\omega \times \vec{r}_{\text{rel}}) + 2\omega \times \vec{v}_{\text{rel}} + \vec{a}_{\text{rel}}
\]
Euler: \( \dot{\omega} \times \vec{r}_{\text{rel}} \)
Centrifugal: \( \omega \times (\omega \times \vec{r}_{\text{rel}}) \)
Coriolis: \( 2\omega \times \vec{v}_{\text{rel}} \)
Work, Energy, and Power
Power:
\[
P = \vec{F} \cdot \vec{v} = F v \cos \theta
\]
Power is the rate at which work is done or energy is transferred.
Work:
\[
W = \int_{s_A}^{s_B} \vec{F} \cdot d\vec{s} = \int_{t_A}^{t_B} \vec{F} \cdot \vec{v} \, dt
\]
Work is the integral of the force along the displacement path.
For constant force and straight-line motion:
\[
W = F d \cos \theta
\]
where \( d \) is the displacement and \( \theta \) is the angle between \( \vec{F} \) and \( d\vec{s} \).
Work-Energy Principle:
\[
W_{\text{total}} = \Delta K = K_B - K_A = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2
\]
The net work done on a particle equals the change in its kinetic energy.
Kinetic Energy:
\[
K = \frac{1}{2} m v^2
\]
Potential Energy:
Conservative Forces:
\[
W_{\text{cons}} = -\Delta U
\]
Non-Conservative Forces:
\[
W_{\text{nc}} = \Delta E_{\text{mechanical}} = (K_B + U_B) - (K_A + U_A)
\]
Mechanical Energy Conservation:
In the absence of non-conservative forces:
\[
E_{\text{mechanical}} = K + U = \text{constant}
\]
\[
K_A + U_A = K_B + U_B
\]
Total Mechanical Energy:
\[
E_{\text{mech}} = K + U_g + U_e
\]
Work Done by Variable Forces:
For forces that vary with position:
\[
W = \int_{x_A}^{x_B} F(x) \, dx
\]
Relation Between Work and Potential Energy:
For a conservative force \( \vec{F} = -\nabla U \):
\[
W = -\Delta U
\]
Week 6
Angular Momentum
Linear Momentum:
\[
\vec{G} = m\vec{v}
\]
Linear momentum is the product of mass and velocity.
Angular Momentum:
\[
\vec{H}_O = \vec{r} \times m\vec{v}
\]
In plane polar coordinates, angular momentum is expressed as:
\[
\vec{H}_O = m r \vec{e}_r \times (\dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_{\theta}) = m r^2 \dot{\theta} \vec{e}_z = H_O \vec{e}_z
\]
Time Derivative of Angular Momentum:
\[
\dot{\vec{H}}_O = m\vec{v} \times \vec{v} + \vec{r} \times m\vec{a} = \vec{r} \times m\vec{a}
\]
Conservation of Angular Momentum:
If \( \vec{r} \times m\vec{a} = 0 \) in the \( \hat{e}_z \) direction, angular momentum is conserved and:
\[
\frac{d\vec{H}_O}{dt} = 0
\]
Orbital Motion
Acceleration in Polar Coordinates:
\[
\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{e}_{\theta}
\]
Equations of Motion:
\[
m(\ddot{r} - r\dot{\theta}^2) = -\frac{G M m}{r^2}
\]
\[
m(r\ddot{\theta} + 2\dot{r}\dot{\theta}) = 0
\]
Conservation of Angular Momentum:
\[
h = r^2 \dot{\theta} = \text{constant}
\]
Energy Equation:
\[
E = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2) - \frac{G M m}{r} = \text{constant}
\]
Orbital Parameters
Velocity Components:
\[
v_r = \dot{r}, \quad v_{\theta} = r \dot{\theta}
\]
\[
v = \sqrt{v_r^2 + v_{\theta}^2}
\]
Specific Mechanical Energy:
\[
\epsilon = \frac{v^2}{2} - \frac{G M}{r}
\]
Orbital Equation (Conic Sections):
\[
r(\theta) = \frac{h^2 / (G M m^2)}{1 + e \cos(\theta - \theta_0)}
\]
where \( e \) is the eccentricity.
Eccentricity:
\[
e = \sqrt{1 + \frac{2 E h^2}{G^2 M^2 m^3}}
\]
Periapsis and Apoapsis Distances:
\[
r_{\text{min}} = \frac{h^2}{G M m^2 (1 + e)}
\]
\[
r_{\text{max}} = \frac{h^2}{G M m^2 (1 - e)}
\]
Types of Orbits:
- Ellipse (\( e < 1 \))
- Parabola (\( e = 1 \))
- Hyperbola (\( e > 1 \))
Additional Key Formulas
Relationship Between Energy and Semi-Major Axis:
\[
E = -\frac{G M m}{2a}
\]
\[
v^2 = G M \left( \frac{2}{r} - \frac{1}{a} \right)
\]
Angular Momentum per Unit Mass:
\[
h = r v_{\theta} = \sqrt{G M a (1 - e^2)}
\]
Velocity at Periapsis and Apoapsis:
\[
v_{\text{min}} = \sqrt{\frac{G M (1 - e)}{a (1 + e)}}
\]
\[
v_{\text{max}} = \sqrt{\frac{G M (1 + e)}{a (1 - e)}}
\]
Orbital Period (Elliptical Orbits):
\[
T = 2\pi \sqrt{\frac{a^3}{G M}}
\]
Velocity Components at Any Point:
\[
v_r = \frac{G M e \sin \theta}{h}
\]
\[
v_{\theta} = \frac{G M (1 + e \cos \theta)}{h}
\]
Power-Law Force
Normal Form (Force):
\[
\vec{F}(r) = -k (r - r_0)^{n} \hat{e}_r
\]
Potential Energy Form: